
www.manaraa.com

Commitment-Based Software Development 1William Mark Sherman TylerJames McGuire Jon SchlossbergInformation and Computing SciencesLockheed Palo Alto Research Labs O/96-01 B/254F3251 Hanover StreetPalo Alto, CA 94034-1191AbstractDuring the development of a system, software modulescan be viewed in terms of their commitments: the con-straints imposed by their own structure and behavior,and by their relationships with other modules (in termsof resource consumption, data requirements, etc.). TheComet system uses explicit representation and reasoningwith commitments to aid the software design and develop-ment process { in particular, to lead software developers tomake decisions that result in reuse. Developers can exam-ine the commitments that must be met in order to includean existing module, and can explore how commitmentschange when modules are modi�ed. Comet has been ap-plied to the domain of sensor-based tracker software.I. IntroductionA major problem for software developers is judging howa change in a module a�ects and is a�ected by the restof the design. Modules need to change for a variety ofreasons: an existing system is modi�ed, a change in anongoing design is proposed, a bug is found, etc.; develop-ers spend much of their time responding to changes. TheComet system provides computational support for devel-opers in understanding { and being inuenced by { therami�cations of proposed design modi�cations. Develop-ers are given feedback about which design decisions will re-sult in modules that can be \coded" (in particular, codedwith the aid of synthesis and reuse technologies) with min-imal disruption to the rest of the design. This is perhapsthe major factor in real life design decision-making, but ithas so far received little attention in software automationtechnology.Software development is a process of negotiation: deci-sions are made and changed frequently as speci�cationschange and new implementation ideas are brought for-ward. Each decision implies a set of constraints that mayor may not be compatible with past or future decisions.Constraints are embodied in the modules { procedures anddata structures { that make up the system. From the ear-liest stages of design, modules can be described in termsof the constraints they will place on the other modules inthe system via their input, output, control structure, andshared resource requirements.A software design comprises a large number of interact-1To appear in IEEE Transactions on Software Engineering, Octo-ber, 1992.

ing constraints that must be met by the set of modulesthat make up the design. A subset of these constraints {of immediate interest to developers designing (or redesign-ing) a particular module for a particular system { are thosethat must be satis�ed in order for that module to be in-cluded in a particular design.For example, suppose a search module is required. Bi-nary search has a commitment to sorted input. The de-cision to use binary search in a design clearly depends onthis commitment. If the data to be searched is already insorted form, binary search is a natural choice. If the datais not sorted and it is inconvenient to introduce a sort rou-tine, using binary search becomes harder, and developersmay choose a di�erent kind of search.The commitment types for any particular domain arede�ned by the ontology: commitments represent the pres-elected constraint types that are known to be \interesting"in determining the implications of component descriptionson each other. For example, in a mechanical domain, phys-ical linkages, spatial relationships, and functional roles de-�ne commitments. In an electrical domain, commitmentsare concerned with connectivity, physical con�guration,thermal, and radiation characteristics. In software, in-put/output, data access requirements, and control rela-tionships represent commitments. In any domain, everycomponent has commitments, some of which are intrin-sic, \brought on by itself" by the component's own struc-ture and behavior description; while others are extrinsic,\thrust on" the component by the other component de-scriptions in the design. Commitments are the constraintsthat bear on whether the component �ts into the design,and are derivable from, and meetable by, some componentdescription in the design.A primary concern for developers is to meet the com-mitments of a module in a way that will not establish newcommitments that will be hard to meet in the current de-sign. Developers making design decisions about a moduleare thus engaged in \commitment management": deter-mining the existing constraints that impact the moduleand the new constraints the module would add, and theamount of work required to satisfy them in the design.A form of commitment management occurs now atthe architecture level. An architecture encodes decisionsabout how the system is to be divided into modules andhow these modules should interact. Many of these arerepresented explicitly (and visually) in various types of ar-chitecture diagrams, e.g., data and control ow diagrams.1



www.manaraa.com

Architecture commitments can be examined and to someextent reasoned about in terms of these explicit represen-tations. Decisions that a�ect modules described at thearchitecture level, i.e., decisions that change module inter-action, are immediately apparent in terms of the diagram.In standard software practice, commitments below thelevel of the system architecture are usually not representedin a way that allows developers to reason about them.With the current code-plus-comments description of mod-ules, commitments are implicit in the design: i.e., theyreside only in the heads of the developers (and later, to amuch lesser extent, in design documents). It is impossi-ble to maintain an accessible record of the commitmentsas they continuously evolve. The result is that developerscannot assess the impact of a new decision.Comet extends the commitment management style ofsoftware development that begins (and now ends) at thearchitecture level throughout the software lifecycle. Devel-opers receive automated support in visualizing and keep-ing track of commitments during design and development.This implies that software modules must be represented ina way that allows rapid assessment of their commitmentswithin the overall design.Sections II, III, and IV describe Comet's representationand reasoning technology. Section V presents a \look andfeel" overview of what it is like to use Comet. Section VIgives a detailed example, providing a scenario of Cometuse and the speci�c reasoning that goes on behind thescenes to produce what the users see on the screen. Thepaper concludes with descriptions of related work, currentstatus, and a discussion of some technical issues raised bythis work.II. Overview of Representation and ReasoningThe design knowledge managed by Comet is in theform of \module descriptions": structure and behaviorspeci�cations of modules interrelated by commitment con-straints. The underlying representation is LOOM, a lan-guage and environment for knowledge representation andreasoning [10]. Declarative knowledge in LOOM consistsof de�nitions, rules, facts, and default rules. The LOOMclassi�er implements forward-chaining, semantic uni�ca-tion, and object-oriented truth maintenance technologiesin order to compile the declarative knowledge into a net-work designed to support e�cient deductive query pro-cessing.Comet is readied for a new application domain by build-ing a set of core domain-speci�c module descriptions.These are built \by hand", i.e., directly in LOOM byComet developers. Once the core modules are built in,further module descriptions are introduced by develop-ers combining and specializing the domain-speci�c termsused in the de�nitions (Comet's facilities for enabling thisuser interaction with the knowledge base are discussedin Section V). Comet's ability to understand developer-introduced module descriptions depends on being ableto automatically \place" new descriptions in its knowl-edge base, i.e., to understand their relationship to known

terms. Because modules are described in precisely de�nedLOOM terms, LOOM automatically maintains a taxon-omy of module descriptions based on the de�ned interre-lationship of their constituent terms. That is, since newmodules must be described as well-de�ned compositionsof abstract classes, LOOM can automatically determinetheir subsumption relationships2.Comet's module representation is designed to enablesupport for developers in modifying existing designs.When a module description is modi�ed, Comet �nds theset of more speci�c module descriptions in the designknowledge base that are consistent with the newly modi-�ed description, and computes the new commitments thatmust be met for each of these alternatives in order for themto be included in the design. Since each commitment canonly be met by further module description modi�cations,this process is recursive: a modi�cation causes the systemto compute a set of potentially relevant design alternativesand their commitments; it can in turn compute the alter-natives that can meet these commitments, along with thecommitments that they introduce, and so on. The compu-tationally intensive reasoning processes within Comet arethus determining the set of modules in the design librarythat are consistent with a new description, and computingthe new commitments they would introduce.By using the concept of commitments to bound the setof constraints that must be computed at any given de-sign step, and by using description logic representationsand reasoning, these reasoning processes can be applied tolarge scale software knowledge bases at the performancelevels required to support human interaction. Commit-ments represent the preselected constraint types that areknown to be \interesting" in determining the implicationsof module descriptions on each other. Restricting con-straint reasoning to commitment management with re-spect to a single focus module changes the computationalsupport task from \full behavior veri�cation" to \provid-ing a useful service". Description logic representations en-sure that the module interrelationships that must be ex-amined for commitment management are described solelyas compositions of primitive terms. This allows the con-struction of reasoning mechanisms than can rely on thisrigor. The detailed complexity inherent in large scale soft-ware makes this a key requirement: the representers of thesoftware must be able to depend on the reasoning systemto perform the same sort of computations on any descrip-tion that uses an agreed-upon set of terms.III. Representing Module DescriptionsThroughout the development process, software develop-ers deal with the system by manipulating module descrip-tions. The initial boxes-and-arrows design for the sys-tem is a set of very high level module descriptions. Thefully implemented system is a set of very detailed mod-2That is, LOOM can determine these relationships in principle. Thereare well known tractability issues that limit the operational feasibility ofsubsumption reasoning [12]; LOOM therefore determines some subsump-tion relationships, but not others [10].2



www.manaraa.com

ule descriptions (annotated code). Software developmentconsists of the elaboration, addition, and modi�cation ofmodule descriptions.Current programming languages provide module de-scriptions in only a very limited form. The software can becompartmentalized into packages and modules, and the in-put and output of the module can be described in terms ofgeneric types. The language for describing types is limitedto structural de�nition (order and substructure speci�ca-tion) in terms of a set of primitives (integer, etc.). Thebehavior of the module is usually described as a procedure,which is not well suited to design activities (e.g., compar-ing the behavior of alternative modules, summarizing thebehavior of complex modules, assessing the relationship ofone module to another).Object-oriented systems include type taxonomies inwhich modules can inherit user-speci�ed characteristicsaccording to user-speci�ed inheritance links. Althoughthis helps the developer in understanding the organiza-tion and function of the modules in the taxonomy, thesesystems cannot enforce constraints on the use of modulesbased on their description. The system does not under-stand the relationship among modules; it only knows theirposition in a taxonomy that was de�ned outside of itspurview.The module description capability in Comet goes be-yond that currently o�ered in both the richness of thedescriptive language and the system's ability to make in-ferences and enforce constraints based solely on the de-scriptions it is given.A. Structural DescriptionsAs an introduction to Comet's taxonomic reasoning, wepresent the usual representation of modules in terms ofstructural descriptions and then show the use of classi�-cation to maintain taxonomies of modules represented inthis way.Module descriptions are encoded as LOOM de�nitions.De�nitions bind module names to concepts (an abstractclass of individuals) or to a relation (an abstract relation-ship among individuals). For example, procedures arede�ned as specializations of the primitive abstract classProcedure Module, whose relations describe substruc-ture, high-level input/output ports, and interconnectivity{ see Figure 13. Ports have semantic datatype restrictionsimposed on their values. Since these datatype restrictionsare themselves abstract classes managed within the taxon-omy, Comet can reason about the legality of connectionsand complain about connections between ports with in-compatible datatypes (e.g., trying to coerce a set of cardi-nality greater than 5 into a set of cardinality less than 3).As an illustrative example, Figure 2 shows specializa-tions of the Procedure Module de�nition to describe3LOOM expressions are shown in bold; abstract class names are capi-talized, relation names are lowercase, and LOOM keywords are lowercasepreceded by a colon. LOOM constructs are explained as they are intro-duced; a numbered comment will appear within the LOOM text and acorresponding explanation will appear in the caption of the enclosing�gure.

(defconcept ProcedureModule:is :primitive ;1;:constraints(:and (:all submodule ProcedureModule) ;2;(:the parent ProcedureModule) ;3;(:all input-port-of InputPort)(:all output-port-of OutputPort)(:all submodule-interconnectity Connection)(:the behavior-of Behavior-Sequence)))Fig. 1. Basic LOOM module description de�nition. (1) A primitive is aLOOM construct that speci�es an abstract class that is not de�ned com-positionally in the knowledge base. Primitives can be specialized withcompositional de�nitions. (2) Every submodule must be a ProcedureModule. (3) Only one parent can exist, and it is a Procedure Module.core procedures used for a \grading" domain, i.e., as-signing letter grades on a curve. The specializations areformed by restricting the module types of subcomponentsand/or the datatypes of inputs and outputs. Each domain-speci�c term mentioned in the de�nition (e.g., ArrayStudent Scores) is itself an abstract class with a precisecompositional de�nition in terms of other abstract classes,eventually bottoming out in the set of primitives for thatdomain.In this example, a grade threshold is identi�ed for usein partitioning grades into groups. Scores in the \good"group are then assigned either an A or B based upon whichhalf they belong to; scores in the \bad" group are assignedC, D, or F based on which third they belong to. Di�erentalternatives for identifying the threshold are modeled asspecializations of Identify Grade Threshold.One such alternative is Median Grade Threshold,whose behavior (discussed in Section III.B) is to identifythe median score stored in the input array. The otheralternative is less precise (and less fair-minded): Spe-cial Circumstances Grade Threshold posits extra in-puts in addition to Array Student Scores (which ismandated via inheritance from the de�nition of Iden-tify Grade Threshold). This allows something otherthan the grades themselves to inuence the cuto� gradechoice. The essence of this is captured by the cardinalityconstraint (at-least 2) on the number of values to �ll itsinput-port-of relation.As a simple example of user-de�ned specialization, Fig-ure 3 shows a case in which an unscrupulous teacher wishesto guarantee the grades of favorite students. The teacherspecializes the more general grading function IdentifyGrade Threshold to take an argument Student thatidenti�es the lucky student. LOOM will classify theteacher's new My Grade Threshold module as a spe-cialization of Indentify Grade Threshold, as it is in-structed to in the de�nition of the concept. Further-more, LOOMwill recognize during this process that, basedon their LOOM de�nitions, Student is not compatiblewith the input type Array Student Scores of Iden-tify Grade Threshold. Thus, it will conclude that theremust be at least two required input datatypes for this mod-ule and it will automatically discover that the new moduledescription is a specialization of Special Circumstances3



www.manaraa.com

(defconcept GradeOnCurve :is(:and ProcedureModule ;1;(:some submodule IdentifyGradeThreshold) ;2;(:some (:compose input-port-of data-type) ;3;ArrayStudentScores)(:some submodule PartitionGradesByThreshold)(:some submodule AssignGoodGradesAorB)(:some submodule AssignBadGradesCorDorF))))(defconcept IdentifyGradeThreshold :is(:and ProcedureModule :primitive(:some (:compose input-port-of data-type)ArrayStudentScores)(:the (:compose output-port-of data-type) Score)))(defconcept MedianGradeThreshold :is(:and IdentifyGradeThreshold(:exactly 1 input-port-of) ;4;(:some behavior-of FindMedianGradeBehavior))))(defconcept SpecialCircumstancesGradeThreshold:is (:and IdentifyGradeThreshold(:at-least 2 input-port-of)))Fig. 2. Domain speci�c core module descriptions (1) Inherit all the re-quirements of a Procedure Module. (2) There exists a submodule oftype Identify Grade Threshold. (3) To impose a type restriction ona linear composition of relations, one can employ LOOM's :compose op-erator. Thus this restriction says that there exists a data-type of aninput-port-of the module which is of type Array Student Scores. (4)Cardinality restriction to one value.(defconcept MyGradeThreshold :is(:and IdentifyGradeThreshold(:some (:compose input-port-of datatype) Student)(:some behavior-of FindGradeBehavior))))Fig. 3. A user-de�ned specializationGrade Threshold4 .This automatic classi�cation-based inference is impor-tant because there may be software design rami�cationsof using a Special Circumstances kind of thresholdingscheme, and Comet can make the teacher/developer awareof it.B. Behavior DescriptionsThe structural implications of existing module descrip-tions on current design decisions are usually relativelyclear to system developers. It is the behavioral implica-tions that most require computational support to be madeevident. Comet must therefore be able to represent andreason about the behavioral implications of module de-scriptions.In Comet, the behavioral description of a module isspeci�ed via its behavior-of relation. Behavioral descrip-tions are compositions of behavior primitives, which areelaborated in each application domain (see Section VI.C)from a prede�ned set of generic behavior primitives.Generic behavior primitives have so far been de�ned torepresent:� boolean Test Condition;� Actions with side-e�ects;� Sequences of behavior, with a relation de�ned forenumerating the steps;4The ability to infer cardinality restrictions from attribute-type in-compatibilities will be supported in LOOM 2.0.

� If Then Else Behavior control ow whose if rela-tion is restricted to be a specialization of Test Con-dition and whose then and else relations are spe-cializations of a behavior Sequence;� message passing between modules;� iteration/Mapping over collections of elements muchlike LISP's MAPCAR with a relation for describingthe mapped lambda-expression; and� Filtering constructs to select elements from collec-tions based upon theTest Condition role restrictionof the �ltering-criteria relation.Relations in the primitive behavior descriptions (e.g.,step, lambda-expression, then, else, if) are �lled byother behavior types, and behavior descriptions can bequali�ed by their input parameter types. Figure 4 showsthe behavior de�nitions for the modules introduced in Fig-ures 2 and 3. For example, to implement Find MedianGrade Behavior, a requirement is imposed that somestep in the behavior sequence must be a call to the prim-itive function Access Middle Of Array. Furthermore,the input parameter must be a sorted array.The description Find Grade Behavior implementsthe behavior of the moduleMy Grade Threshold shownin Figure 3: it mandates that some step in the behaviorsequence be a Student Search. Via inheritance fromBinary Search, the Student Search behavior is imple-mented as an array search using an If Then Else Behav-ior construct. The if relation uses the Equal Value be-havior primitive to test whether the target has been found.To handle the case where this does not occur, the else re-lation's implementation is de�ned to contain a step thatis a nested If Then Else Behavior. Within this nestedstructure, the behavior primitive Less Than Value de-termines which half of the array to do a recursive binarysearch on.C. Augmenting Behavior Descriptions with Test RunsBehavior descriptions are used to discriminate amongProcedure Modules. The intent is not to build exe-cutable speci�cations, but rather to develop a rich enoughset of descriptors to allow retrieval of modules based ondescriptions of behavioral requirements.Subsumption checking over behavior descriptions is notalways possible because of the limited expressiveness ofthe language over which subsumption checking is feasi-ble. Consequently the classi�er may be powerless to drawdistinctions between several modules within the same tax-onomic neighborhood, even though the necessary condi-tions have been speci�ed.To deal with this modeling problem, Comet allows mod-ule descriptions to be augmented with example test runs.Testruns are represented in LOOM via the test-run re-lation (see Figure 5). The values for this relation are in-stances of the concept Run, which has relations de�nedfor capturing each test-input and test-output of an ex-ample run.Since testruns are grounded instances of actual behav-4



www.manaraa.com

(defconcept FindMedianGradeBehavior :is(:and Behavior-Sequence(:some step(:and AccessMiddleOfArray(:the input-parameter(:and ArrayStudentScoresSortedArray))))))(defconcept FindGradeBehavior :is(:and Behavior-Sequence(:some step StudentSearch)))(defconcept StudentSearch :is(:and BinarySearch(:some input-parameter ArrayStudentScores)(:some input-parameter Student)(:some output-parameterScore)))(defconcept BinarySearch :is(:and ArraySearchIfThenElseBehavior(:some if EqualValue) ;1;(:some (:compose else step) IfThenElseBehavior) ;2;(:some (:compose else step if) LessThanValue)) ;3;:constraints(:and (:some (:compose else step then step)BinarySearch) ;4;(:some (:compose else step else step)BinarySearch) ;5;(:some intrinsic-commitment RequireSortCommit)))Fig. 4. Behavior description.(1,2,3,4,5):if (EqualValue) then f..gelse f if (LessThanValue) then fBinarySearchg else fBinarySearchgg(defrelation test-run:is :primitive:domain (:or ProcedureModule Behavior):range Run)(defconcept Run :is(:and :primitive(:all test-input Thing)(:all test-output Thing)))Fig. 5. The test-run relation and the Run concept.ior, they have the nice computational property of beingamenable to backward-chaining pattern recognition. De-ductive patterns over testruns can be devised to specifynecessary and excluding conditions for behaviors that aredi�cult to capture using only the subset of �rst-orderlogic exploitable by LOOM's classi�er. To locate likelycandidates for module reuse, Comet uses these deductivepatterns as �lters to discriminate between closely relatedmodules after the classi�er has focused attention to a rel-evant set of concepts.As an example, let's return to the grading domain. Anew teacher wishes to de�ne a grade threshold selectionalgorithm: grades are placed in a �xed-size priority queue,and the lowest grade left in the queue will be the good/badgrade threshold. The teacher calls this algorithmReduc-ing Sort (see Figure 6) and speci�es it as a descendingsort algorithm that does screening. Descending Sortis a specialization of the Sort primitive behavior. TheScreen behavior is also a di�cult requirement to capturein the subset of LOOM that is amenable to classi�cation.The critical aspect of screening is therefore captured inComet as a deductive pattern over testruns, looking for

(defconcept ReducingSort :is(:and DescendingSort Screen))(defconcept Screen :is(:and Behavior(:some input-parameter Collection)(:some output-parameter Collection)(:satisfies (?behav)(:for-some (?run ?input ?output)(:and (test-run ?behav ?run)(test-input ?run ?input)(test-output ?run ?output)(strict-subset ?output ?input)))))Fig. 6. The concepts Reducing Sort and Screen.cases where an output data collection is a strict subsetof an input data collection. To �nd potentially reusablebehaviors, LOOM performs pattern recognition on all in-stances of behavior which are a type ofDescending Sort.Consequently less candidates (i.e., the more relevant ones)will be recommended for reuse than would have been sug-gested by a mechanism relying only on LOOM's classi�er.While not being adequate to capture behavior completely,testruns are still an accurate description of behavior andprovide a vehicle to more closely associate LOOM behav-ior descriptions with actual code.As will be discussed in the next section, Comet providesa means for modules to impose behavioral requirementson their neighbors. These constraints are expressed viaLOOM concepts. Deductive patterns over testruns can beexploited to express more precise behavioral constraints,thereby enriching the class of constraint checking infer-ences that Comet will provide for its users.IV. Representing CommitmentsAgain, commitments are the constraints that must besatis�ed for a particular module to be included in a partic-ular design. Some of these are intrinsic (e.g., the commit-ment of binary search to sorted input); while others areextrinsic (e.g., the commitment to use the message pass-ing protocol used by the other modules). In any case, theonly constraints that qualify as commitments are thosethat bear on whether the module �ts into the design, andare derivable from, and meetable by, some module descrip-tion in the design.The Comet approach does not claim to determine thecomplete set of commitments for a given module auto-matically { indeed that is probably impossible. InsteadComet assumes the responsibility of reliably (and rapidly)managing a well de�ned subset of the commitments, andof providing visualizations to aid the developers in usingthem in their development process.This \well de�ned subset" of commitments consists ofthose that Comet can automatically infer from moduledescriptions, and those that are explicitly represented asCommitment annotations on module descriptions. Themost straightforward kind of automatically inferable com-mitments involve implied input/output relationships. Forexample, the Send Message class is the primitive behav-5



www.manaraa.com

ior responsible for representing message passing betweenmodules. Any module whose behavior description includesan element of the Send Message class has automaticallyinferable commitments to other modules in the design toensure that messages are properly received. Similarly, theinput datatype restrictions on all procedural modules im-ply commitments that mandate the existence of upstreammodules that are capable of producing output datatypescompatible with the module's input requirements.Comet's use of declarative behavior descriptions allowsautomatically inferable commitments arising from type re-strictions to be more subtle than module input/outputport matching. For example, Find Median Grade Be-havior in Figure 4 uses the Access Middle Of Arraybehavior primitive and further restricts its input parame-ter to be both a Sorted Array and an Array StudentScores. This allows a commitment to be inferred whichis assigned to all modules whose behavior can be classi-�ed as a specialization of Find Median Grade Behav-ior; either the module's behavior includes an additionalprior sorting sub-behavior step, or the module possesesan input-port-of whose datatype is of the correct sortedarray type.To expand the support o�ered by Comet, commitmentscan also be represented explicitly as annotations on coremodule descriptions. Commitments are represented as theclass Commitment with the relation requirement forspecifying criteria for how the commitment can be metwithin a design. For example, the Binary Search be-havior in Figure 4 has a requirement that the RequireSort Commit (shown in Figure 7) de�nition be satis�ed.Require Sort Commit is just an illustrative explicit rep-resentation of the automatically inferred commitment al-ready supported by Comet and discussed in the precedingparagraph. The requirement for meeting the commitmentis that the behavior's parent module must be classi�ableas a Module Containing Sort Behavior. This is de-�ned by the module either having a sorted input or con-taining a sorting sub-behavior within the composed be-havior description of the module. The relation behavior-network-member* de�nes the transitive search throughthe module's behavior description.So far, we have been concerned with the commitmentsintroduced by a new module { commitments that mustbe met by other modules in the design. Comet must alsorecognize which of the other modules' unmet commitmentsare met by the module being introduced into the design.Furthermore, it would be useful to tell developers when aparticular kind of commitment ought to be met by a newmodule, and to give the new module the responsibility ofmeeting that commitment.Comet relies on LOOM's deductive capability to deter-mine which outstanding commitments in a design are ac-tually met by each newly introduced module. Each un-met commitment is compared against the structure andbehavior description of the new module. If by backwardchaining or subsumption checking LOOM can decide thatsome aspect of the description satis�es the criteria speci-

(defconcept RequireSortCommit :is(:and Commitment(:the requirementModuleContainingSortBehavior)))(defconcept ModuleContainingSortBehavior :is(:and Module(:satisfies (?mod)(:or (:for-some (?datatype ?port) ;1;(:and (input-port-of ?mod ?port)(datatype ?port ?datatype)(SortedArray ?datatype)))(:for-some (?behav) ;2;(:and (behavior-network-member*(behavior-of ?mod) ?behav)(SortBehavior ?behav)))))))Fig. 7. Explicit commitment annotations. (1) Either the module has aninput-port-of whose datatype is a Sorted Array or (2) some behav-ior element within the module's behavior decomposition is of type SortBehavior. The relation behavior-network-member* recursively de-scends through the behavior description of a module �nding all membersub-behaviors.�ed in the commitment, the commitment is removed fromthe \unmet" list. To allow for LOOM's incomplete rea-soning capability, Comet allows developers to override thisprocedure and explicitly assert that a module meets a par-ticular commitment { but it maintains a record of wherethe assertion came from.To achieve the goal of informing developers when amodule ought to meet a commitment, we have added aresponsible-for relation on the Commitment class forspecifying what module classes should bemeeting the com-mitment. This \responsibility" is inherited by any user-de�ned specializations of the module. If a new moduleis \responsible-for" but is unable to meet an outstandingcommitment in a particular design, Comet informs the de-velopers of that fact, and of other module descriptions (ifany) that are capable of meeting the commitment.After the intrinsic commitments of a newly incorpo-rated module have been identi�ed, responsibility for meet-ing each intrinsic commitment is assigned to those mod-ules satisfying the commitment's responsible-for rela-tion criteria. These become extrinsic commitments forthose modules: extra responsibilities thrust upon themby the intrinsic commitments of the new module. If noexisting module meets the \responsible-for" criteria, thennew modules need to be incorporated into the design. If amodule meets the responsible-for criteria, but does notmeet the requirements of a commitment, the developersare warned that it must be replaced.V. Look and FeelThis representation and reasoning capability is used toprovide a direct manipulation-style visual feedback of userinteraction with the Comet system. Figure 8 shows aschematic Comet screen5 representing a snapshot of a de-velopment process in progress. The screen consists of threewindows: Module Description, for editing diagram repre-sentations of modules; Forms-Based Editing, for editing5This schematic is a MacIntosh drawing, but the other \screen pic-tures" are printed directly from the Comet screen.6



www.manaraa.com

text representations of modules; and Design Memory, fordisplaying existing module descriptions form the Cometknowledge base that could �t into the current design, alongwith the commitments that must be satis�ed in order forthem to do so. These windows will be discussed in termsof a typical user interaction sequence, following the num-bered arrows in Figure 8.Developers begin by browsing system diagrams { muchas they might look through design documentation fromprevious systems before embarking on their task. If the jobis a modi�cation of an existing system already known toComet, the developers might begin by examining a fairlyspeci�c module. If the job is to build a \whole new sys-tem" in the domain, the starting point might be an exist-ing architecture. From Comet's point of view, the startingpoint does not matter: module descriptions at all levelsare expressed externally in terms of diagrams and text,and internally in terms of the LOOM-based structure andbehavior representation language.The developers can examine the structure and behav-ior of modules to see if they meet the new requirements,or, more usually, to see what has to be changed in orderfor them to meet the new requirements. The Module De-scription window in Figure 8 shows a graphic renderingof the module description under consideration. Currently,only data ow diagramming is supported: various levelsof detail can be viewed via recursive Module Descriptionwindows.In addition, developers can view English-like descrip-tions of the module's structure and behavior. The textis generated (in a very limited way) by the system. Pa-rameterized English-like phrase forms are associated withconstructs in the module description language. A partic-ular module description is rendered by instantiating theparameters of the appropriate phrase forms using the cor-responding elements of the description's constructs.Comet must allow developers to express new moduledescriptions to meet new needs. However, given currenttechnology, the system must severely limit the users' ex-ibility in this task. Comet allows the user to introducenew module descriptions only as specializations of exist-ing module descriptions. In practice this is not much ofa restriction, since some of the existing module descrip-tions are at a very high level of abstraction { virtually anymodule can be seen as a kind of one of them. The moretelling restriction is that Comet allows the user to special-ize module descriptions only with a small set of prede�nedmodi�cation alternatives. These are presented to the userin terms of a forms-based interface: essentially the usermust pick from the modi�cation options presented on themenus (see section VI.C). In step (1) of Figure 8, thedevelopers are modifying the text version of the moduledescription in the Forms-Based Editing window in order tomake it meet new requirements. The modi�ed text is au-tomatically translated back into LOOM, resulting in a newdescription, shown highlighted in the Module Descriptionwindow.In step (2) of Figure 8, the developers request to see

any existing, more detailed, module descriptions in theComet knowledge base that are consistent with the newdescription they have just created. The goal is to �nd ex-isting assets that might apply to the new job. The idea isthat when the developers propose a module to ful�ll someaspect of their design, they should be able to see if the sys-tem knows of any existing module descriptions that couldpossibly �ll that role. The Design Memory window [11]presents module descriptions that are potential substitu-tion candidates. The leftmost column lists vertically thealternative module descriptions that are compatible withthe current design. A crucial part of the Comet philoso-phy is that \compatible with" means that their descrip-tions are subsumed by the developers' description, andtheir commitments can potentially be met in the currentdesign. This is rather di�erent than the usual notion ofcompatibility: the candidate modules are not yet compat-ible with the design, but they can be made so if theircommitments are not met. This notion is very importantto the tractability of the system's reasoning processes (seeSection IX.A).The links emanating from each module description rep-resent its commitments. Each commitment can be met byincorporating the module description it points to (anothermodule known to the system, and thus another asset) intothe current design. A dashed link indicates that the com-mitment has already been met in the current design. TheDesign Memory window therefore gives developers imme-diate visual feedback on the rami�cations of using knownassets: each commitment must be met, which means thatthe designated other parts of the design must be alteredto include the candidate module descriptions. In the �g-ure, after exploring the commitments, the developers havedecided that the highlighted module description in the De-sign Memory window meets their new requirements, andthat its commitments are not too hard to meet. In step (3)of Figure 8, they substitute it for the highlighted mod-ule in the Module Description window, thus altering thedesign. Each module description modi�ed in the Cometenvironment adds to the system's store of reusable assets{ reusable because they are described in terms of theircommitments to other known assets.In Comet, choosing substitution modules is deliberatelydesigned as an interactive process. We believe that devel-opers must play an active role in reuse. First, as a practi-cal matter, the system cannot be expected to understandall commitments among modules. Second, we believe thatexploring the reuse memory should be a feedback process:if the developers specify a module description that leadsto an empty Design Memory window, or that gives rise tocandidates that have onerous commitments, the develop-ers may wish to reconsider their proposal. That is, a validreason for developers' inability to �nd appropriate mod-ules is that they are looking for the wrong thing; theirthinking or their requirements need to change. One ofthe most powerful reasons to change a design is to makeexisting solutions applicable.7



www.manaraa.com

Fig. 8. Schematic view of a Comet screen. Arrows represent data ow, boxes represent data structures, and ovals represent procedures. Double boxesor ovals indicate that the module description is associated with code. Heavy dashed arrows show numbered steps in the user interaction sequencedescribed here, and do not actually appear on the screen.VI. ExampleWe now show this \look and feel" in the context of anactual scenario of Comet use, and explain how the repre-sentation and reasoning discussed in Section 2 implementsthe system's behavior. We �rst introduce the applicationdomain, and then sketch some highlights from an actualComet scenario. Finally, we give a \behind the scenes"look at the system, showing some detailed module descrip-tions from the application domain, and describing speci�creasoning activities.A. DomainWe have tested Comet representation and reasoning byconstructing an application in the domain of \trackers".We have examined actual tracker systems, from designdocuments to code, and created (by hand) Comet mod-ule descriptions of signi�cant portions of the system toform the core knowledge base in the tracker domain. Inparallel (i.e., without reference to the speci�cs of existingsystems), we developed some informal requirements fora hypothetical new tracker system for construction usingComet. Our purpose was to determine whether Comet'smodule description language is adequate for representingthe intricacies of real software systems, and whether thereasoning mechanisms are su�cient (including su�cientlye�cient) to support interactive software development.Tracker systems take sensor data about vehicles movingthrough space and resolve the data into individual vehicletracks. Air tra�c control systems are a familiar exam-ple. Tracking comprises a variety of functions, includingaccessing sensor data in the form of \contacts" (proba-ble vehicle positions), screening the data according to theregions that could contain the predicted continuations ofknown tracks, initiating new tracks, updating tracks, mak-ing new predictions, etc.

For any new application domain, Comet's built-in be-havior primitives (discussed in Section III.B) must beextended with domain-speci�c specializations. Figure 9shows the taxonomy for some of the behavior primitivescreated for the tracker domain . For example, the genericVolume Containment primitive has been specialized to ac-commodate various kinds of volumes of space that are rel-evant to tracker software (\scene gates", \track gates",and \clusters"). This extended set of primitives is thenused to build (compositionally) behavior descriptions forthe actual software module descriptions that form the corefor this domain.B. ScenarioThe core module descriptions for the tracker havingbeen built, one scenario of Comet use begins with softwaredevelopers being given a requirement to build a multi-hypothesis tracker, i.e., a tracker that can temporarily as-sociate an ambiguous contact with more than one track;later contacts are expected to resolve the ambiguity. Thedevelopers have access (via Comet) to descriptions of ex-isting tracker systems. The goal is to use Comet to seeif one of the existing systems meets this requirement,or whether one can be easily re-engineered to meet thenew requirement. Developers can browse through Comet'sknowledge base of tracker designs, examining module de-scriptions in terms of architecture diagrams and Englishtext as described above. In this case the developers selectan existing single hypothesis tracker design6 to re-engineerto handle multiple hypotheses.6This example is based on an actual Lockheed tracker.8



www.manaraa.com

Fig. 9. Part of the behavior taxonomy. Ovals represent concepts (i.e., the constructs created by the defconcept operator in LOOM); arrows representsubsumption relationships; the semicircular line connecting arrows below a concept indicates that the linked subsumers form a disjoint covering.Step 1: Modify Assign Contact to Track to handlemultiple hypothesesThe developers focus �rst on the Coarse Contact Screen-ing module, one of four major high-level modules in theexisting design. This module examines incoming contactdata from the sensors and assigns the contact to an ap-propriate existing track. If there is no appropriate existingtrack, Coarse Contact Screening will initiate a new track,or hold the contact in a temporary data structure (calleda cluster) until more information is known. The devel-opers �nd that the �rst place that needs to be modi�edwithin Coarse Contact Screening is the module that as-signs contacts to existing tracks, called Assign Contact ToBest Track. To examine the behavior of this module, thedevelopers call up the generated text description of thebehavior of this module, shown in Figure 10.The developers see that the aspect of module behaviorrepresented by the phraseFor the one contact/track gate with the highestscoreclearly needs to be modi�ed (after all, they are interestedin multiple hypotheses, not just the one with the high-est score). They therefore request possible replacementoptions, and the system presents three, one of which se-lects all of the contact/track gates rather than choosingonly the one with the highest score. This option is cho-sen, and the developers delete the two lines that refer totrack scoring, since the scoring is superuous given thatall contact/track gate assignments are now appropriate.The developers save this new behavior, causing Cometto replace Assign Contact To Track with a temporaryplaceholder module called (by the developers) Assign Con-tact To All Tracks. Comet maps the new behavior intoa LOOM concept, created from the lower-level conceptsthat correspond directly with English phrases (see nextsection). This concept is classi�ed in the taxonomy.

Next, LOOM is queried for modules whose behavior spe-cializes this concept. For each of these modules, Cometdetermines all of their commitments relative to the exist-ing design, and presents them in the Design Memory win-dow. In our example scenario, only one such specializer islocated, Multi Assign Contact To Track.Step 2: Add Scene GatesThe developers now begin to browse the Design Memorywindow (see Figure 11) in order to explore the rami�ca-tions of substituting Multi Assign Contact To Track intothe design. They �nd that two data structure commit-ments (Scene Gate and Contact) and two procedure com-mitments (Scene Gate Containment Check and One To NAssoc Update Scene History) are currently outstanding.Focusing on the Scene Gate commitment, the DesignMemory window shows that it can be met by introduc-ing an Agglomerate Gates procedure. Agglomerate Gatestakes Track Gates as inputs and \agglomerates" them intoScene Gates. Track Gate is tracker terminology for the vol-ume of space that could possibly contain the continuationof a track; Scene Gates are composed of Track Gates thatoverlap, and are normally introduced to gain e�ciency inanalysis.The developer chooses to introduce the AgglomerateGates module into the design. This can be accomplisheddirectly from the Design Memory window by selecting theAgglomerate Gates icon. Comet allows only legal connec-tions to existing ports; if some of the required ports donot yet exist (modules might be introduced into the de-sign before the data structures they need), Comet allowsdangling connections to exist temporarily.9



www.manaraa.com

Fig. 10. Forms-based editing of behavior descriptions

Fig. 11. Partially modi�ed design with Design Memory windowStep 3: Replace Test for Track Gate Containment withScene Gate ContainmentThe developers then proceed to examine the Scene GateContainment Check procedure commitment (at the top ofthe Design Memory window in Figure 11). This commit-ment arises from the fact that the current design containsa Test For Track Correlation Gate Containment, whichfunctions in terms of Track Gates. However, we alreadyknow from the previous commitment that the proposedMulti Assign Contact To Track works in terms of SceneGates, not Track Gates. Thus the Test For Track Correla-tion Gate Containment module needs to be replaced withone that handles Scene Gates.The developers can see how much work it will be toincorporate Scene Gate Containment Check by examin-ing its four commitments. The commitment to Assign
Contact To Cluster has already been met (indicated bythe dashed line), since an acceptable Assign Contact ToCluster module already exists in the current design. Sat-is�ed that the remaining three unmet commitments willnot pose too much of a challenge, the developers substi-tute the new Test For Scene Gate Containment module forthe existing Test For Track Correlation Gate Containmentmodule in the design.Figure 12 shows all of the commitments in the DesignMemory window having been met. Note the correspond-ing changes in Coarse Contact Screening in the ModuleDescription window.C. Behind the ScenesThis section highlights some of the representations andreasoning underlying the steps in the scenario described10



www.manaraa.com

Fig. 12. Revised design with all commitments metabove.Supporting Forms-Based EditingStep 1 of the scenario showed a new LOOM behaviordescription being created by modi�cation of a text de-scription of an existing behavior. Comet implements thiscapability by o�ering behavior alternatives, each describedby a text phrase in a menu. These phrases corresponddirectly with domain-speci�c behaviors in the core taxon-omy. When the developers wish to modify a phrase in atext behavior description, as they did withFor the one contact/track gate with the highestscorein the scenario, Comet creates a menu of behavior alterna-tives by �nding the most speci�c other domain behaviorprimitives that are subsumed by the same generic behaviorprimitive. Figure 13 shows how the phrases in the menuin Figure 9 are associated with behavior primitives in thetaxonomy.Finding Relevant Substitution CandidatesWhen the developers choose one of the alternative prim-itive behaviors,For all contact/track gatesin the scenario, Comet uses it to compose a new behav-ior description (i.e., it substitutes it into the composedbehavior description of the existing module). In the sce-nario, the modi�ed behavior description forms a LOOMconcept named Placeholder Behavior1, shown in Fig-ure 14. Comet's goal is to see if this behavior description{ the one that the developers want to introduce into thedesign { subsumes the behavior description of any knownmodule. That is, Comet looks to see whether any of themodules that it knows about are compatible with, butmore speci�c than, the developers' speci�cation. Suchmodules would be good candidates for reuse in the de-velopers' current design.

In Figure 14, one candidate behavior description, As-sign Contact to All Track Behavior is found which issubsumed by the newly formed behavior concept Place-holder Behavior1. This is the behavior description ofthe module Multi Assign Contact to Track, whichappears as the single oval icon in the left-hand column ofthe Design Memory window (Figure 11) in Step 2 of thescenario.Computing CommitmentsAfter Multi Assign Contact to Track has been se-lected as a substitution candidate, Comet computes itscommitments via inheritance (see Figure 15) and presentsthem in the Design Memory window. Multi AssignContact to Track has intrinsic commitments to inputof types Contact and Scene Gate, giving rise to thebottom two commitments displayed in the Design Mem-ory window in Figure 11. In addition, the module MultiAssign Contact to Track inherits the explicitly repre-sented commitment Scene Gate Containment Check,shown in Figure 16. The module responsible-for ful-�lling this commitment is a module of type Coarse TestFor Contaiment, and the moduleTest For Track Cor-relation Gate Containment in Figure 11 meets theresponsible-for criteria. The requirement which thismodule must meet is speci�ed in the Scene Gate Con-tainment Check description (not shown); this furtherconstrains the Contact and Scene Gate outputs of theresponsible module such that the Contact must be con-tained in the volume of space represented by the SceneGate. This constraint is speci�ed behaviorally, usingstatic test runs (as described in section III.C) to verifythat all Contact/Scene Gate output pairs from the re-sponsible module have the primitively de�ned containsrelationship between them. This commitment gives riseto the commitment link to the Scene Gate Contain-ment Check module at the top of the Design Memory11



www.manaraa.com

Fig. 13. The association of behavior alternatives with English phrases

Fig. 14. Finding substitution candidateswindow in �gure 11. The fact that this commitment linkis solid indicates that the existing module within the de-sign meeting the responsible-for criteria does not meetthe requirement criteria, and consequently alternativemodules need to be suggested by Comet.Suggesting Modules to Meet CommitmentsFor each commitment it discovers, Comet tries to sug-gest existing modules that can meet it. It looks �rst formodules that exist in the current design; if it �nds any, thecommitment is considered to be met, and is shown witha dashed line, as occurred in Step 3 of the scenario. Oth-erwise, Comet will search for existing modules that couldbe incorporated into the design, and shows the commit-ments that must be met in order to do so. For an explicitcommitment, the characteristics of the modules that could
meet it are spelled out in the requirement relation, andComet need only �nd the subsumees of the criteria de-�ned in it. For other commitments, some special reason-ing over module descriptions is required. For example, tomeet a commitment mandating an input of a particulardatatype, Comet looks upstream in the design for mod-ules of that datatype or modules that produce output ofthat datatype. If no such modules exist, Comet will tryto �nd a module that can be introduced into the design inthe right context that is capable of of creating the desireddatatype.In the scenario we saw the Agglomerate Gates mod-ule presented as a way of meeting the Scene Gatedatatype commitment. No module in the existing designproduced the Scene Gate datatype. Thus the taxonomywas searched for all modules capable of creating a Scene12



www.manaraa.com

Fig. 15. Intrinsic commitments computed via inheritance. (A) Connections must be created to siblings producing Contact and Scene Gate datastructures. (B) Modules exist ful�lling the commitments Scene Gate Containment Check and One to N Assoc Update Scene History.(defconcept SceneGateContainmentCommit :is(:and ContainmentCommit(:the responsible-for CoarseTestForContainment)(:the requirement SceneGateContainmentCheck)))Fig. 16. An explicit commitment. The module \responsible-for" meet-ing the commitment is of type Coarse Test For Containment. Therequirement it must meet is described by the description Scene GateContainment Check, which is (not shown) expressed as a deductivepattern over the stored behavioral testruns of a module.Gate. For aProcedure Module to be considered a \cre-ator", it must possess a behavior capable of producing thedesired datatype as output from other input datatypes ex-cluding the desired one. So a behavior that took a SceneGate as input and produced it as output is not considereda creator. As it turned out, the behavior description of theAgglomerate Gates module possessed the relevant cre-ator sub-behavior.VII. Alternative Approaches and Related WorkAll knowledge-based approaches for facilitating softwaredevelopment share a common underlying theme of sup-porting developers by reasoning in terms of explicitly rep-resented knowledge about software. However, the vari-ous approaches di�er greatly in their emphasis on partic-ular technologies and stages of the development process.Comet's emphasis is as follows:� detailed, computational treatment of module behav-ior as well as structure { Comet contains formal de-scriptions of the behavior of each module, and hasthe capability of capturing and reasoning about com-plex behaviors from both their constituent primitivebehaviors and stored prototypical test runs;� primary attention to the interaction of design deci-sions in an evolving design { Comet provides context-speci�c guidance on what existing modules may be

relevant to include in a design, and what design mod-i�cations will be required in order to include them;and� support for the design phase of system construction,when the system requirements and behavioral speci�-cations are being explored and negotiated in order todetermine the internal structure of the software sys-tem { Comet's users are system engineers responsiblefor architecting the system, rather than programmerscoding to given requirements. The implications ofthese choices can be seen by comparison with otherknowledge-based software development systems.The Knowledge-Based Software Assistant is an attemptto develop a knowledge-based paradigm supporting allphases of the software development lifecycle from require-ments through code implementation. Notable achieve-ments in this program have included the Knowledge-BasedRequirements Assistant (KBRA) of Czuchry and Harris [1]and the Knowledge-Based Speci�cation Assistant of John-son [5], as well as the combination of these two componentsinto the ARIES system [6].Like Comet, these systems are aimed at supportingreuse. KBRA, for example, supports the developmentof system requirements by managing informal informationin an intelligent notebook, noting inconsistencies betweendi�erent parts of this notebook, generating di�erent pre-sentations of information, and critiquing and sometimescompleting partial descriptions. To enable requirementsreuse, the system relies on users browsing through the do-main taxonomy or requesting information using systemnames. It does not have a facility for retrieving and rea-soning about relevant information based on abstract de-scriptions, as Comet does. Also, while it uses constraintsand classi�cation within its knowledge representation lan-guage (Socle), the classi�cation is based on special purpose13



www.manaraa.com

decision tables and the constraints are primarily numeric,derived from formulas relating requirement entities. Thus,KBRA does not exploit general classi�cation or rely onsymbolic constraint reasoning to determine suitable reusecandidates or system consistency in the way Comet does.Instead, it focuses more on the issues of multiple presen-tations of information and maintaining their consistencythrough a central repository of requirement statements,something not yet pursued in Comet.The IDeA system of Lubars and Harandi [9] and itssuccessor, Rose-1 [7], were developed to support the incre-mental and coordinated evolution of requirements and de-sign. In these systems, the user is a requirements analystand the system serves the role of the software developer.The initial user requirements lead IDeA to select an ap-propriate design schema from its library and, through con-tinued interaction, this schema is re�ned into a completedesign. The system also notes when there are mismatchesto be resolved and further re�nements to be made andstores these on a goal agenda. The users are not exploringdesigns as in Comet { designs are always developed in atop-down fashion, and a requirement cannot be retractedonce it has been speci�ed. In Comet, a design choice canalways be changed and the user can begin the design pro-cess from a very abstract module or an entire implementedsystem. Later extensions to Rose-1 (see [8]) support thiskind of exibility through truth maintenance and hyper-text mechanisms still lack the range of reasoning supportfor determining the rami�cations of system modi�cationsthat Comet provides.Another recent knowledge-based system, LaSSIE [2],promotes software reuse by providing multiple viewpointsof modules, including architectural, domain, and code per-spectives. Like Comet, LaSSIE relies on a description logicsystem, KANDOR for representing knowledge about soft-ware. Domain actions are represented in terms of their su-perclasses, actors, agents, operands, and the state changesthey produce. LaSSIE exploits classi�cation to providecandidate responses to user queries: module descriptionsin queries are classi�ed within the domain taxonomy, andall subsumees are retrieved for possible further examina-tion. LaSSIE is primarily oriented around a higher leveldescription of domain actions and is used as an informa-tion resource which users can query for reuse candidates,examples, or further module details. The system has moredetail on the actual code, as well as automated extractionmechanisms [16] for obtaining code knowledge from mod-ules.LaSSIE di�ers from Comet in its representation of mod-ules and in the support it provides to users. In LaSSIE,actions are represented by simple slots de�ning the rolesof the action, whereas Comet includes a detailed formaldescription of behavior. Comet uses its compositionalbehavior representation to support retrieval of potentialreuse candidates in response to edited behavior descrip-tions. Reasoning in terms of behavior descriptions alsoenables some of its more subtle feedback about modulecommitments and inconsistencies in the design. LaSSIE

o�ers the user no explicit assistance when retrieving mod-ules concerning which are most suitable in the currentdesign nor how the module might need to be altered to�t into that design { the same module will always be re-trieved for a given query, no matter where in the currentdesign it might be used. There are also di�erences in thereasoning of the systems due to the KANDOR language,e.g., constraints between roles within a given module can-not be stated. Furthermore, in comparison to Comet, thesystem is designed primarily to aid the developer ratherthan the designer; as such, it has more detail on the actualcode, as well as automated extraction mechanisms [16] forobtaining code knowledge from modules.The Programmer's Apprentice [14] is an intelligent com-puter assistant that can aid the programmer in construct-ing a software system. This work has relied primarily onthe Plan Calculus [13] and the CAKE knowledge repre-sentation and reasoning system. The Plan Calculus pro-vides an abstract, plan-based view of a body of softwarecode, while CAKE supplies a layered reasoning system formaking inferences at the levels of propositional logic, al-gebraic reasoning, frames, and the Plan Calculus itself.This approach has resulted in the development of a spe-cialized editor, KBEmacs [17], which allows programmersto develop their programs using both plans and programtext. KBEmacs automatically does translation and updat-ing between these two forms of representation. There hasalso been work on a Requirements Apprentice that sup-ports the generation of formal speci�cations from infor-mal requirement descriptions based on a library of clich�escapturing common concepts employed in a given domain.The clich�es are themselves represented in the Plan Cal-culus. In comparison with Comet, the Programmer's Ap-prentice work di�ers in its strong orientation towards pro-gramming. It seeks to abstract away the canonical form ofprograms and enable pseudo-natural language interactionswhich can refer to parts of a program directly. However,this does not overcome the problem of describing and rea-soning about a system in domain-oriented terms. Rather,it focuses more on easing the implementation burden onthe programmer (synthesis support) without the kind ofhigh-level design support o�ered by Comet. One couldimagine, however, extending the notion of clich�es into thedesign realm to bridge this gap between requirements andimplementation. VIII. StatusComet runs on a Sun Sparcstation. It is based onLOOM and on interface software previously developed forthe LEAP automatic programming system [4]. A tax-onomy of generic behavior primitives has been built, asdiscussed in Section III.B. These were specialized intosome ninety-six primitive behaviors for the tracker do-main, which, along with sixty-�ve datatype descriptions(tracks, contact, etc.), form the core knowledge base forthis domain. These primitives were then composed tomodel actual Lockheed tracker code.This initial system is currently serving as an experi-14



www.manaraa.com

mental prototype, used to guide further development ofthe representation and reasoning components, as well asto experiment with user interface techniques for presentingdetailed guidance to the users.IX. DiscussionThe development and use of the Comet system hascaused us to address issues that we believe are of concernto all knowledge-based approaches to supporting softwaredevelopment. This section briey outlines our \design phi-losophy" with respect to some issues of e�ciency, knowl-edge acquisition, and associating formal software descrip-tions with actual code.A. E�cient ReasoningThe key reasoning support o�ered by Comet, �nding rel-evant module descriptions, is a form of description classi�-cation: the system must determine which module descrip-tion terms are subsumed by themodule description term ofinterest. After much study in this area (e.g., see [12]), weknow that any reasonably expressive description represen-tation language will not allow complete, tractable classi�-cation reasoning. So we are in the usual bind: the moduledescription language must be expressive enough to encodethe �ne shades of meaning that can di�erentiate potentialsubstitute modules from inappropriate candidates, but thesystem must be able to rapidly discover at least most ofthe right candidates most of the time.LOOM follows the tradition [15,18] of allowing the ex-pression of terms whose subsumption relationships can-not be automatically determined by the system. Thisleaves open the question of how much reasoning is to bedone in addition to the subsumption reasoning providedby LOOM, and how it is to be structured with respect tothe reasoning provided by LOOM.Comet uses the idea of commitments to break the over-all subsumption reasoning problem into tractable chunks,and to provide a clean interface to LOOM. The LOOMclassi�er automatically determines the subsumption rela-tionships of each new description to the extent that itcan, given (e�ciency-based) limitations on its ability todeal with some stated constraints and given that primi-tive terms play a prominent role in module descriptions.Comet uses LOOM classi�cation to determine a set ofmodules that could possibly be substituted for the newmodule description on the basis of their structure and be-havior. Comet then takes this set, determines their com-mitments, and displays them for the user. This can beseen as a form of \residue" reasoning [3]: each module isappropriate (i.e., can be substituted into the design) if itscommitments are met.Commitments are by de�nition determined with respectto a single module. They are expressed in terms of rela-tionships with other module descriptions, which in turnmay have commitments that must be met. However,Comet does not explore all of these rami�cations at once;the user is responsible for choosing to examine each ofthe module descriptions in turn. The reasoning task is

thus broken into chunks, exploiting the modularity of thedesign. Reasoning is also paced to user interaction, andtakes advantage of the users' reasoning capability: somecommitments may not be worth exploring for reasons thatthe user understands but the system does not.B. Going Beyond the Built-InExcept for the built-in core, Comet's knowledge base ofmodule descriptions grows automatically as a side-e�ectof using the system for software development. Develop-ers use Comet for support in analyzing the e�ect of de-sign decisions, not as part of a knowledge acquisition sce-nario. However, as developers modify module descriptionsto meet changing requirements, the system automaticallyacquires knowledge by relating each new module descrip-tion to the module descriptions it already knows about.The developers do not need to be concerned with this pro-cess: they just use the system to do their job.New module descriptions must be specializations ofknown ones. As was pointed out earlier, since the de-scriptions are hierarchically organized at di�erent levelsof detail, this is not a serious restriction: it is easy to spe-cialize a very general type. On the other hand, the morespeci�c the description that is specialized, the more thesystem will know about it, and the more helpful it will beto the developers in determining commitments. We be-lieve that this will encourage specialization at the mostspeci�c level possible.C. Getting Down to CodeComet does not guarantee that the module descriptionsit manipulates can be realized as working code. For thosemodule descriptions that are associated with code, Cometdoes not guarantee that the code correctly implements themodule as described. Besides being unavoidable, we donot see this as a serious problem.The primary goal of Comet is to encourage the use ofexisting assets in software development. Given the oft-quoted proportions of e�ort in system development, themost valuable unused assets are undoubtedly previouslyproven designs, not code. Nonetheless, the ultimate goalof software development is working code. The eventualgoal for Comet is to automatically generate code from themodule descriptions, and indeed, we are currently work-ing to use Comet module descriptions as input to an auto-matic programming system [4]. But even in the immediateterm we believe that the association of code with descrip-tions will become quite accurate via the cumulative e�ectsof reuse: module descriptions with incorrect implementa-tions will soon be detected and weeded out. Bugs occur inhardware modules too, but the continual use of the samemodules in many designs results in increasingly bug-freemodules. X. AcknowledgementsThe authors acknowledge the very signi�cant contribu-tions of Alan Teague in implementing the user interfacesoftware, Brian Livezey in designing the module descrip-15



www.manaraa.com

tion language, and Sukesh Patel, Lori Ogata, and RichBaxter in analyzing actual tracker software. We also thankRobert MacGregor for descriptions of LOOM reasoningand the referees for their detailed suggestions.XI. References[1] A. J. Czuchry, Jr. and D. R. Harris, \KBRA: A NewParadigm for Requirements Engineering", IEEE Expert,Vol. 3, No. 4, pp. 21-35, 1988.[2] P. Devanbu, R. J. Brachman, P. G. Selfridge, and B.W. Ballard, \LaSSIE: A Knowledge-Based Software Infor-mation System", Communications of the ACM, Vol. 34,No. 5, pp. 35-49, 1991.[3] J. Finger and Genesereth, M., RESIDUE: A De-ductive Approach to Design Synthesis, Stanford Heuris-tic Programming Project Memo HPP-85-1, Stanford, CA,1985.[4] H. Graves, \Interactive Design in LEAP", Proceed-ings of AAAI Workshop on Automated Software Design,Anaheim, CA, pp. 173-182, 1991.[5] W. L. Johnson, \Overview of the Knowledge-BasedSpeci�cation Assistant", Proceedings of the 2nd AnnualKnowledge-Based Software Assistant Conference, Rome,NY, 1987.[6] W. L. Johnson and D. R. Harris, \RequirementsAnalysis Using Aries: Themes and Examples", Proceed-ings of the 5th Annual Knowledge-Based Software Assis-tant Conference, Rome, NY, pp. 121-131, 1990.[7] M. D. Lubars, \A General Design Representation",Technical Report STP-066-89, MCC, Austin, TX, 1989.[8] M. D. Lubars, \A General Design Representation- Representing Design Dependencies in the Issue-BasedInformation Style", Technical Report STP-426-89, MCC,Austin, TX, 1989.[9] M. D. Lubars and M. T. Harandi, \The Knowledge-Based Re�nement Paradigm and IDeA: Concepts, Limi-tations and Future Directions", Proceedings of the 1988AAAI Workshop on Automating Software Design, 1988.[10] R. MacGregor, \The Evolving Technology ofClassi�cation-based Knowledge Representation Systems",in Principles of Semantic Networks: Explorations in theRepresentation of Knowledge, John Sowa (ed.), MorganKaufmann, San Mateo, CA, 1990.[11] W. Mark, \Software Design Memory", Proceedingsof AAAI Workshop on Automated Software Design, Ana-heim, CA, pp. 115-120, 1991.[12] P. Patel-Schneider, \Undecidability of Subsumptionin NIKL", Arti�cial Intelligence, 38(3), 1989.[13] R. C. Rich, \A Formal Representation for Plans inthe Programmer's Apprentice", Proceedings of the Sev-enth International Joint Conference on AI, pp. 1044-1052,1981.[14] R. C. Rich and R. C. Waters, \The Programmer'sApprentice: A Research Overview", IEEE Computer, Vol.21, No. 11, pp. 10-25, 1988.[15] J. Schmolze andW. Mark, \The NIKL Experience",Computational Intelligence, 7 (2), pp. 134 - 159, 1991.[16] P. G. Selfridge, \Integrating Code Knowledge with

a Software Information System", Proceedings of the 5thAnnual Knowledge-Based Software Assistant Conference,Rome, NY, pp. 183-195, 1990.[17] R. C. Waters, \The Programmer's Apprentice: ASession with KBEmacs", IEEE Transactions on SoftwareEngineering, Vol. SE-11, No. 11, pp. 1296-1320, 1985.[18] Woods, W. and Schmolze, The KL-ONE Family,Harvard University Aiken Computation Laboratory TR-20-90, Cambridge, MA, 1990.

16


